\(\int \frac {\cos (c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^2} \, dx\) [463]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 39, antiderivative size = 100 \[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=-\frac {(2 A-B) x}{a^2}+\frac {(10 A-4 B+C) \sin (c+d x)}{3 a^2 d}-\frac {(2 A-B) \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {(A-B+C) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \]

[Out]

-(2*A-B)*x/a^2+1/3*(10*A-4*B+C)*sin(d*x+c)/a^2/d-(2*A-B)*sin(d*x+c)/a^2/d/(1+sec(d*x+c))-1/3*(A-B+C)*sin(d*x+c
)/d/(a+a*sec(d*x+c))^2

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {4169, 4105, 3872, 2717, 8} \[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {(10 A-4 B+C) \sin (c+d x)}{3 a^2 d}-\frac {(2 A-B) \sin (c+d x)}{a^2 d (\sec (c+d x)+1)}-\frac {x (2 A-B)}{a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

[In]

Int[(Cos[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^2,x]

[Out]

-(((2*A - B)*x)/a^2) + ((10*A - 4*B + C)*Sin[c + d*x])/(3*a^2*d) - ((2*A - B)*Sin[c + d*x])/(a^2*d*(1 + Sec[c
+ d*x])) - ((A - B + C)*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x])^2)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2717

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4105

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*
(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[
A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rule 4169

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*C
sc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m
+ 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m -
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B+C) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \frac {\cos (c+d x) (a (4 A-B+C)-a (2 A-2 B-C) \sec (c+d x))}{a+a \sec (c+d x)} \, dx}{3 a^2} \\ & = -\frac {(2 A-B) \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {(A-B+C) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \cos (c+d x) \left (a^2 (10 A-4 B+C)-3 a^2 (2 A-B) \sec (c+d x)\right ) \, dx}{3 a^4} \\ & = -\frac {(2 A-B) \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {(A-B+C) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {(2 A-B) \int 1 \, dx}{a^2}+\frac {(10 A-4 B+C) \int \cos (c+d x) \, dx}{3 a^2} \\ & = -\frac {(2 A-B) x}{a^2}+\frac {(10 A-4 B+C) \sin (c+d x)}{3 a^2 d}-\frac {(2 A-B) \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {(A-B+C) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(279\) vs. \(2(100)=200\).

Time = 1.54 (sec) , antiderivative size = 279, normalized size of antiderivative = 2.79 \[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (-18 (2 A-B) d x \cos \left (\frac {d x}{2}\right )-18 (2 A-B) d x \cos \left (c+\frac {d x}{2}\right )-12 A d x \cos \left (c+\frac {3 d x}{2}\right )+6 B d x \cos \left (c+\frac {3 d x}{2}\right )-12 A d x \cos \left (2 c+\frac {3 d x}{2}\right )+6 B d x \cos \left (2 c+\frac {3 d x}{2}\right )+66 A \sin \left (\frac {d x}{2}\right )-36 B \sin \left (\frac {d x}{2}\right )+12 C \sin \left (\frac {d x}{2}\right )-30 A \sin \left (c+\frac {d x}{2}\right )+24 B \sin \left (c+\frac {d x}{2}\right )-12 C \sin \left (c+\frac {d x}{2}\right )+41 A \sin \left (c+\frac {3 d x}{2}\right )-20 B \sin \left (c+\frac {3 d x}{2}\right )+8 C \sin \left (c+\frac {3 d x}{2}\right )+9 A \sin \left (2 c+\frac {3 d x}{2}\right )+3 A \sin \left (2 c+\frac {5 d x}{2}\right )+3 A \sin \left (3 c+\frac {5 d x}{2}\right )\right )}{12 a^2 d (1+\cos (c+d x))^2} \]

[In]

Integrate[(Cos[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^2,x]

[Out]

(Cos[(c + d*x)/2]*Sec[c/2]*(-18*(2*A - B)*d*x*Cos[(d*x)/2] - 18*(2*A - B)*d*x*Cos[c + (d*x)/2] - 12*A*d*x*Cos[
c + (3*d*x)/2] + 6*B*d*x*Cos[c + (3*d*x)/2] - 12*A*d*x*Cos[2*c + (3*d*x)/2] + 6*B*d*x*Cos[2*c + (3*d*x)/2] + 6
6*A*Sin[(d*x)/2] - 36*B*Sin[(d*x)/2] + 12*C*Sin[(d*x)/2] - 30*A*Sin[c + (d*x)/2] + 24*B*Sin[c + (d*x)/2] - 12*
C*Sin[c + (d*x)/2] + 41*A*Sin[c + (3*d*x)/2] - 20*B*Sin[c + (3*d*x)/2] + 8*C*Sin[c + (3*d*x)/2] + 9*A*Sin[2*c
+ (3*d*x)/2] + 3*A*Sin[2*c + (5*d*x)/2] + 3*A*Sin[3*c + (5*d*x)/2]))/(12*a^2*d*(1 + Cos[c + d*x])^2)

Maple [A] (verified)

Time = 0.22 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.79

method result size
parallelrisch \(\frac {\left (\sec \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (3 A \cos \left (2 d x +2 c \right )+28 A \cos \left (d x +c \right )+23 A +2 B -2 C \right )-20 B +8 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-24 x d \left (A -\frac {B}{2}\right )}{12 a^{2} d}\) \(79\)
derivativedivides \(\frac {-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B}{3}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} C}{3}+5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A -3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C +\frac {4 A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-4 \left (2 A -B \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d \,a^{2}}\) \(133\)
default \(\frac {-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B}{3}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} C}{3}+5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A -3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C +\frac {4 A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-4 \left (2 A -B \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d \,a^{2}}\) \(133\)
risch \(-\frac {2 A x}{a^{2}}+\frac {B x}{a^{2}}-\frac {i A \,{\mathrm e}^{i \left (d x +c \right )}}{2 a^{2} d}+\frac {i A \,{\mathrm e}^{-i \left (d x +c \right )}}{2 a^{2} d}+\frac {2 i \left (9 A \,{\mathrm e}^{2 i \left (d x +c \right )}-6 B \,{\mathrm e}^{2 i \left (d x +c \right )}+3 C \,{\mathrm e}^{2 i \left (d x +c \right )}+15 A \,{\mathrm e}^{i \left (d x +c \right )}-9 B \,{\mathrm e}^{i \left (d x +c \right )}+3 C \,{\mathrm e}^{i \left (d x +c \right )}+8 A -5 B +2 C \right )}{3 d \,a^{2} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{3}}\) \(157\)
norman \(\frac {\frac {\left (2 A -B \right ) x}{a}-\frac {\left (2 A -B \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{a}-\frac {\left (A -B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{6 a d}+\frac {\left (5 A -3 B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{2 a d}-\frac {\left (9 A -3 B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a d}+\frac {\left (13 A -B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{6 a d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) a}\) \(176\)

[In]

int(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/12*((sec(1/2*d*x+1/2*c)^2*(3*A*cos(2*d*x+2*c)+28*A*cos(d*x+c)+23*A+2*B-2*C)-20*B+8*C)*tan(1/2*d*x+1/2*c)-24*
x*d*(A-1/2*B))/a^2/d

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.27 \[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=-\frac {3 \, {\left (2 \, A - B\right )} d x \cos \left (d x + c\right )^{2} + 6 \, {\left (2 \, A - B\right )} d x \cos \left (d x + c\right ) + 3 \, {\left (2 \, A - B\right )} d x - {\left (3 \, A \cos \left (d x + c\right )^{2} + {\left (14 \, A - 5 \, B + 2 \, C\right )} \cos \left (d x + c\right ) + 10 \, A - 4 \, B + C\right )} \sin \left (d x + c\right )}{3 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/3*(3*(2*A - B)*d*x*cos(d*x + c)^2 + 6*(2*A - B)*d*x*cos(d*x + c) + 3*(2*A - B)*d*x - (3*A*cos(d*x + c)^2 +
(14*A - 5*B + 2*C)*cos(d*x + c) + 10*A - 4*B + C)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) +
 a^2*d)

Sympy [F]

\[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {A \cos {\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \cos {\left (c + d x \right )} \sec {\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \cos {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**2,x)

[Out]

(Integral(A*cos(c + d*x)/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x) + Integral(B*cos(c + d*x)*sec(c + d*x)/(se
c(c + d*x)**2 + 2*sec(c + d*x) + 1), x) + Integral(C*cos(c + d*x)*sec(c + d*x)**2/(sec(c + d*x)**2 + 2*sec(c +
 d*x) + 1), x))/a**2

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 235 vs. \(2 (96) = 192\).

Time = 0.31 (sec) , antiderivative size = 235, normalized size of antiderivative = 2.35 \[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {A {\left (\frac {\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {24 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} + \frac {12 \, \sin \left (d x + c\right )}{{\left (a^{2} + \frac {a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (d x + c\right ) + 1\right )}}\right )} - B {\left (\frac {\frac {9 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {12 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}}\right )} + \frac {C {\left (\frac {3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a^{2}}}{6 \, d} \]

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

1/6*(A*((15*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 24*arctan(sin(d*x + c
)/(cos(d*x + c) + 1))/a^2 + 12*sin(d*x + c)/((a^2 + a^2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2)*(cos(d*x + c) + 1
))) - B*((9*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 12*arctan(sin(d*x + c
)/(cos(d*x + c) + 1))/a^2) + C*(3*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2)/
d

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.52 \[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=-\frac {\frac {6 \, {\left (d x + c\right )} {\left (2 \, A - B\right )}}{a^{2}} - \frac {12 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )} a^{2}} + \frac {A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - B a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + C a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 9 \, B a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, C a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{6}}}{6 \, d} \]

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

-1/6*(6*(d*x + c)*(2*A - B)/a^2 - 12*A*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 + 1)*a^2) + (A*a^4*tan(1/
2*d*x + 1/2*c)^3 - B*a^4*tan(1/2*d*x + 1/2*c)^3 + C*a^4*tan(1/2*d*x + 1/2*c)^3 - 15*A*a^4*tan(1/2*d*x + 1/2*c)
 + 9*B*a^4*tan(1/2*d*x + 1/2*c) - 3*C*a^4*tan(1/2*d*x + 1/2*c))/a^6)/d

Mupad [B] (verification not implemented)

Time = 15.90 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.10 \[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {A-B+C}{a^2}-\frac {B-3\,A+C}{2\,a^2}\right )}{d}-\frac {x\,\left (2\,A-B\right )}{a^2}+\frac {2\,A\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left (a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a^2\right )}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (A-B+C\right )}{6\,a^2\,d} \]

[In]

int((cos(c + d*x)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^2,x)

[Out]

(tan(c/2 + (d*x)/2)*((A - B + C)/a^2 - (B - 3*A + C)/(2*a^2)))/d - (x*(2*A - B))/a^2 + (2*A*tan(c/2 + (d*x)/2)
)/(d*(a^2*tan(c/2 + (d*x)/2)^2 + a^2)) - (tan(c/2 + (d*x)/2)^3*(A - B + C))/(6*a^2*d)